Multi-domain versus single-domain: a magnetic field is not a must for promoting spin-polarized water oxidation
The reaction kinetics of spin-polarized oxygen evolution reaction (OER) can be enhanced by ferromagnetic (FM) catalysts under an external magnetic field. However, applying a magnetic field necessitates additional energy consumption and creates design difficulties for OER. Herein, we demonstrate that...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169299 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The reaction kinetics of spin-polarized oxygen evolution reaction (OER) can be enhanced by ferromagnetic (FM) catalysts under an external magnetic field. However, applying a magnetic field necessitates additional energy consumption and creates design difficulties for OER. Herein, we demonstrate that a single-domain FM catalyst without external magnetic fields exhibits a similar OER increment to its magnetized multi-domain one. The evidence is given by comparing the pH-dependent increment of OER on multi- and single-domain FM catalysts with or without a magnetic field. The intrinsic activity of a single-domain catalyst is higher than that of a multi-domain counterpart. The latter can be promoted to approach the former by the magnetization effect. Reducing the FM catalyst size into the single-domain region, the spin-polarized OER performance can be achieved without a magnetic field, illustrating an external magnetic field is not a requirement to reap the benefits of magnetic catalysts. |
---|