Single mode lasing from CsPbBr₃ microcrystals fabricated by solid state space-confined growth

All-inorganic metal halide perovskites, such as CsPbX3 (X = Br, Cl, or I), have attracted significant interest for a new generation of integrated, high-performance optoelectronic devices. To realize the full potential of layer-by-layer devices, perovskite crystal thin films are preferred over crysta...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng, Shijia, Qiao, Zhen, Wang, Zeng, Xiao, Lian, Das, Subhasis, Thung, Yi Tian, Yuan, Zhiyi, Ta, Van Duong, Fan, Weijun, Chen, Yu-Cheng, Sun, Handong
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169338
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:All-inorganic metal halide perovskites, such as CsPbX3 (X = Br, Cl, or I), have attracted significant interest for a new generation of integrated, high-performance optoelectronic devices. To realize the full potential of layer-by-layer devices, perovskite crystal thin films are preferred over crystal ingots, considering carrier loss during carrier transport. The space-confined method is a facile way of fabricating perovskite crystal films in a geometrically confined space to break the isotropic growth. Many researchers have reported effective preparation of large-area perovskite films using this method. However, most space-confined methods require growth in a liquid phase (solution), which can cause uncontrollable nucleation, surface traps, and unsatisfactory device performance. In this work, a pure solid-state space-confined strategy to grow CsPbBr3 films for the first time without relying on solution conditions is developed. The regular shapes of CsPbBr3 films prepared by this solid-state space-confined strategy can function as effective multimode and single-mode Fabry–Perot (F–P) microlasers under optical pumping. This work overcomes the challenge that the conventional space-confined method can only be adapted to the liquid phase. It also opens a new approach for making high-quality microlasers, which are significant for photonic integrated circuits and optoelectronic devices.