Image-based conflict detection with convolutional neural network under weather uncertainty
Detection of air traffic conflicts in a weather constrained airspace is challenging given the inherent uncertainties and aircraft maneuvers which give rise to new conflict birth-points. Traditional conflict detection tools are untenable in such situations as they primarily rely on flight-plan, aircr...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169380 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Detection of air traffic conflicts in a weather constrained airspace is challenging given the inherent uncertainties and aircraft maneuvers which give rise to new conflict birth-points. Traditional conflict detection tools are untenable in such situations as they primarily rely on flight-plan, aircraft performance characteristics and trajectories projection in short-term (2-4 minutes). This work adopts a convolutional neural network (CNN) model, on radar-like images, for conflict detection task in a constrained airspace. The CNN models are well-known for their learning capabilities when dealing with unstructured data like pixelated images. In this study, historical ADS-B data with weather constrained airspace is input as pixelated images to the CNN model. The learned model was compared with two well-known models for conflict detection (CD). The results demonstrated that the CNN based model was able to predict off-nominal conflict with high accuracy. The CNN model also demonstrated its ability to predict off-nominal conflict early for a given ten-minute look-ahead window. The CNN based model also showed low levels of false alarm signals as compared to other models. Generally speaking, all models showed low probabilities of miss-detection, mostly in the early phase of the 10-minute look-ahead window. This novel approach may serve to develop effective CD algorithms with longer look-ahead time and may aid in early detection of air traffic conflicts in non-nominal scenarios. |
---|