Thermal responses of human tissues during nano-assisted hyperthermia for subcutaneous tumors

Non-invasive thermal therapy for subcutaneous tumors with the assistance of gold nanoparticles and surface cooling measures was proposed in the present study. To achieve real-time monitoring of 3-D temperature distribution and accurate measurement of thermal response, we developed a theoretical appr...

Full description

Saved in:
Bibliographic Details
Main Authors: Ma, Jingxuan, Yang, Xianfeng, Xing, Yun, Sun, Yuxin, Yang, Jialing
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169389
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Non-invasive thermal therapy for subcutaneous tumors with the assistance of gold nanoparticles and surface cooling measures was proposed in the present study. To achieve real-time monitoring of 3-D temperature distribution and accurate measurement of thermal response, we developed a theoretical approach in which the dual-phase-lag (DPL) biological heat transfer model and Henriques' burn estimation model were employed. A closed-form solution for temperature distribution in the skin tissue can be obtained from this new model by employing the Green's function method. In addition, the influences of the embedment of gold nanoparticles, surface cooling, and non-Fourier effects on the temperature, thermal damage, and size of the burnt region were discussed in detail. The present model performs well in addressing the difficult issue of temperature and burn prediction inside human tissue. It is found that the combination of gold nanoparticles and surface cooling can concentrate thermal empyrosis in the subcutaneous tumor to enhance tumor elimination and protect both skin and deeper healthy tissue. This study provides theoretical support for the improvement and development of laser thermotherapy for subcutaneous tumors.