Effect of the wetting hydraulic property of soil on 1-D water infiltration
Rainwater infiltration is primarily governed by the soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) of soil. Both the SWCC and the HCF are hysteretic during the drying and wetting processes. In a numerical simulation, different seepage results can be obtained by inco...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169394 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Rainwater infiltration is primarily governed by the soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) of soil. Both the SWCC and the HCF are hysteretic during the drying and wetting processes. In a numerical simulation, different seepage results can be obtained by incorporating different hydraulic conductivity functions of soil. In practice, the wetting HCF is commonly estimated from the wetting SWCC using the statistical method, which is named HCFswcc,w in this note. However, there is no study that has verified the results from seepage analyses using HCFswcc,w. Therefore, the objective of this study is to investigate the influence of wetting SWCC and wetting HCF on 1-D water infiltration. The results from the numerical simulations were verified with the instrumentation reading from a soil column. It was observed that the results from the model using wetting HCFPSDF, which defines the wetting HCF estimated using the concept of pore-size distribution function, gave better agreement with the instrumented data. Therefore, both wetting SWCC and wetting HCFPSDF are advised to be used as input information for the numerical simulation of rainwater infiltration. |
---|