Optimized implementation and analysis of CHAM in quantum computing
A quantum computer capable of running the Grover search algorithm, which reduces the complexity of brute-force attacks by a square root, has the potential to undermine the security strength of symmetric-key cryptography and hash functions. Recently, studies on quantum approaches have proposed analyz...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169523 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-169523 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1695232023-07-21T15:36:41Z Optimized implementation and analysis of CHAM in quantum computing Yang, Yujin Jang, Kyungbae Baksi, Anubhab Seo, Hwajeong School of Computer Science and Engineering Engineering::Computer science and engineering Quantum Computer Grover’s Algorithm A quantum computer capable of running the Grover search algorithm, which reduces the complexity of brute-force attacks by a square root, has the potential to undermine the security strength of symmetric-key cryptography and hash functions. Recently, studies on quantum approaches have proposed analyzing potential quantum attacks using the Grover search algorithm in conjunction with optimized quantum circuit implementations for symmetric-key cryptography and hash functions. Analyzing quantum attacks on a cipher (i.e., quantum cryptanalysis) and estimating the necessary quantum resources are related to evaluating post-quantum security for the target cryptography algorithms. In this paper, we revisit quantum implementations of CHAM block cipher, an ultra lightweight cipher, with a focus on optimizing the linear operations in its key schedule. We optimized the linear equations of CHAM as matrices by applying novel optimized decomposition techniques. Using the improved CHAM quantum circuits, we estimate the cost of Grover’s key search and evaluate the post-quantum security strength with further reduced costs. Published version This research was financially supported by Hansung University. 2023-07-21T06:56:50Z 2023-07-21T06:56:50Z 2023 Journal Article Yang, Y., Jang, K., Baksi, A. & Seo, H. (2023). Optimized implementation and analysis of CHAM in quantum computing. Applied Sciences, 13(8), 5156-. https://dx.doi.org/10.3390/app13085156 2076-3417 https://hdl.handle.net/10356/169523 10.3390/app13085156 2-s2.0-85156144882 8 13 5156 en Applied Sciences © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and- conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Quantum Computer Grover’s Algorithm |
spellingShingle |
Engineering::Computer science and engineering Quantum Computer Grover’s Algorithm Yang, Yujin Jang, Kyungbae Baksi, Anubhab Seo, Hwajeong Optimized implementation and analysis of CHAM in quantum computing |
description |
A quantum computer capable of running the Grover search algorithm, which reduces the complexity of brute-force attacks by a square root, has the potential to undermine the security strength of symmetric-key cryptography and hash functions. Recently, studies on quantum approaches have proposed analyzing potential quantum attacks using the Grover search algorithm in conjunction with optimized quantum circuit implementations for symmetric-key cryptography and hash functions. Analyzing quantum attacks on a cipher (i.e., quantum cryptanalysis) and estimating the necessary quantum resources are related to evaluating post-quantum security for the target cryptography algorithms. In this paper, we revisit quantum implementations of CHAM block cipher, an ultra lightweight cipher, with a focus on optimizing the linear operations in its key schedule. We optimized the linear equations of CHAM as matrices by applying novel optimized decomposition techniques. Using the improved CHAM quantum circuits, we estimate the cost of Grover’s key search and evaluate the post-quantum security strength with further reduced costs. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Yang, Yujin Jang, Kyungbae Baksi, Anubhab Seo, Hwajeong |
format |
Article |
author |
Yang, Yujin Jang, Kyungbae Baksi, Anubhab Seo, Hwajeong |
author_sort |
Yang, Yujin |
title |
Optimized implementation and analysis of CHAM in quantum computing |
title_short |
Optimized implementation and analysis of CHAM in quantum computing |
title_full |
Optimized implementation and analysis of CHAM in quantum computing |
title_fullStr |
Optimized implementation and analysis of CHAM in quantum computing |
title_full_unstemmed |
Optimized implementation and analysis of CHAM in quantum computing |
title_sort |
optimized implementation and analysis of cham in quantum computing |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/169523 |
_version_ |
1773551344565616640 |