Surface engineering toward stable lithium metal anodes

The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of artificial SEIs with improved physicochemical and mechanical properties has been demonstrated to be important to...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu, Gongxun, Nai, Jianwei, Luan, Deyan, Tao, Xinyong, Lou, David Xiong Wen
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169853
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of artificial SEIs with improved physicochemical and mechanical properties has been demonstrated to be important to stabilize the LMAs. This review comprehensively summarizes current efficient strategies and key progresses in surface engineering for constructing protective layers to serve as the artificial SEIs, including pretreating the LMAs with the reagents situated in different primary states of matter (solid, liquid, and gas) or using some peculiar pathways (plasma, for example). The fundamental characterization tools for studying the protective layers on the LMAs are also briefly introduced. Last, strategic guidance for the deliberate design of surface engineering is provided, and the current challenges, opportunities, and possible future directions of these strategies for the development of LMAs in practical applications are discussed.