Atomically dispersed zincophilic sites in N,P-codoped carbon macroporous fibers enable efficient Zn metal anodes
Zn dendrite growth and undesired parasitic reactions severely restrict the practical use of deep-cycling Zn metal anodes (ZMAs). Herein, we demonstrate an elaborate design of atomically dispersed Cu and Zn sites anchored on N,P-codoped carbon macroporous fibers (denoted as Cu/Zn-N/P-CMFs) as a three...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169917 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Zn dendrite growth and undesired parasitic reactions severely restrict the practical use of deep-cycling Zn metal anodes (ZMAs). Herein, we demonstrate an elaborate design of atomically dispersed Cu and Zn sites anchored on N,P-codoped carbon macroporous fibers (denoted as Cu/Zn-N/P-CMFs) as a three-dimensional (3D) versatile host for efficient ZMAs in mildly acidic electrolyte. The 3D macroporous frameworks can alleviate the structural stress and suppress Zn dendrite growth by spatially homogenizing Zn2+ flux. Moreover, the well-dispersed Cu and Zn atoms anchored by N and P atoms maximize the utilization as abundant active nucleation sites for Zn plating. As expected, the Cu/Zn-N/P-CMFs host presents a low Zn nucleation overpotential, high reversibility, and dendrite-free Zn deposition. The Cu/Zn-N/P-CMFs-Zn electrode exhibits stable Zn plating/stripping with low polarization for 630 h at 2 mA cm-2 and 2 mAh cm-2. When coupled with a MnO2 cathode, the fabricated full cell also shows impressive cycling performance even when tested under harsh conditions. |
---|