Self-parameterization based multi-resolution mesh convolution networks
This paper addresses the challenges of designing mesh convolution neural networks for 3D mesh dense prediction. While deep learning has achieved remarkable success in image dense prediction tasks, directly applying or extending these methods to irregular graph data, such as 3D surface meshes, is non...
Saved in:
Main Authors: | Shi, Hezi, Jiang, Luo, Zheng, Jianmin, Zeng, Jun |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169922 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Multi-resolution attention convolutional neural network for crowd counting
由: Zhang, Youmei, et al.
出版: (2020) -
Multi-channel convolutional neural network based 3D object detection for indoor robot environmental perception
由: Wang, Li, et al.
出版: (2019) -
Variational mesh decomposition
由: Zhang, Juyong, et al.
出版: (2013) -
Poisson kernel: avoiding self-smoothing in graph convolutional networks
由: Yang, Ziqing, et al.
出版: (2022) -
L₀-regularization based material design for hexahedral mesh models
由: Li, Haoxiang, et al.
出版: (2022)