From rogue wave solution to solitons

Using a generalized nonlinear Schrödinger equation, we investigate the transformation of a fundamental rogue wave solution to a collection of solitons. Taking the third-order dispersion, self-steepening, and Raman-induced self-frequency shift as the generalizing effects, we systematically observe ho...

Full description

Saved in:
Bibliographic Details
Main Authors: Chowdury, Amdad, Chang, Wonkeun, Battiato, Marco
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169938
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Using a generalized nonlinear Schrödinger equation, we investigate the transformation of a fundamental rogue wave solution to a collection of solitons. Taking the third-order dispersion, self-steepening, and Raman-induced self-frequency shift as the generalizing effects, we systematically observe how a fundamental rogue wave has an impact on its surrounding continuous wave background and reshapes its own characteristics while a group of solitons are created. Applying a local inverse scattering technique based on the periodization of an isolated structure, we show that the third-order dispersion and Raman-induced self-frequency shift generates a group of solitons in the neighborhood where the rogue wave solution emerges. Using a volume interpretation, we show that the self-steepening effect stretches the rogue wave solution by reducing its volume. Also, we find that with the Raman-induced self-frequency shift, a decelerating rogue wave generates a red-shifted Raman radiation while the rogue wave itself turns into a slow-moving soliton. We show that when third-order dispersion, self-steepening, and Raman-induced self-frequency shift act together on the rogue wave solution, each of these effects favor the rogue wave to generate a group of solitons near where it first emerges while the rogue wave itself also becomes one of these solitons.