From rogue wave solution to solitons
Using a generalized nonlinear Schrödinger equation, we investigate the transformation of a fundamental rogue wave solution to a collection of solitons. Taking the third-order dispersion, self-steepening, and Raman-induced self-frequency shift as the generalizing effects, we systematically observe ho...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169938 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Using a generalized nonlinear Schrödinger equation, we investigate the transformation of a fundamental rogue wave solution to a collection of solitons. Taking the third-order dispersion, self-steepening, and Raman-induced self-frequency shift as the generalizing effects, we systematically observe how a fundamental rogue wave has an impact on its surrounding continuous wave background and reshapes its own characteristics while a group of solitons are created. Applying a local inverse scattering technique based on the periodization of an isolated structure, we show that the third-order dispersion and Raman-induced self-frequency shift generates a group of solitons in the neighborhood where the rogue wave solution emerges. Using a volume interpretation, we show that the self-steepening effect stretches the rogue wave solution by reducing its volume. Also, we find that with the Raman-induced self-frequency shift, a decelerating rogue wave generates a red-shifted Raman radiation while the rogue wave itself turns into a slow-moving soliton. We show that when third-order dispersion, self-steepening, and Raman-induced self-frequency shift act together on the rogue wave solution, each of these effects favor the rogue wave to generate a group of solitons near where it first emerges while the rogue wave itself also becomes one of these solitons. |
---|