Prediction of harbour vessel fuel consumption based on machine learning approach

Fuel consumption influences both the economic and environmental perspectives of shipping. With the help of machine learning, meaningful knowledge and complex relationships can be extracted from high-dimensional historical data. In this study, machine learning models were developed to predict the fue...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Zhong Shuo, Lam, Jasmine Siu Lee, Xiao, Zengqi
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169945
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Fuel consumption influences both the economic and environmental perspectives of shipping. With the help of machine learning, meaningful knowledge and complex relationships can be extracted from high-dimensional historical data. In this study, machine learning models were developed to predict the fuel consumption of harbour vessels with ship-related and meteorological factors. The superiority of machine learning models over statistical linear regression model (Ridge regression) has been proved. This study further investigated whether the use of meteorological factors enhances the prediction of fuel consumption. A case study on the prediction of tugboat fuel consumption was conducted. The Random Forest model outperformed the other models. Comparative experiments showed that meteorological factors collectively add value to the fuel consumption prediction, which enhances the accuracy from 0.7 to 38.9%. The potential uses of the prediction results are highlighted in terms of both operational management and environmental evaluation aspects.