Prediction of harbour vessel fuel consumption based on machine learning approach

Fuel consumption influences both the economic and environmental perspectives of shipping. With the help of machine learning, meaningful knowledge and complex relationships can be extracted from high-dimensional historical data. In this study, machine learning models were developed to predict the fue...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chen, Zhong Shuo, Lam, Jasmine Siu Lee, Xiao, Zengqi
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/169945
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Fuel consumption influences both the economic and environmental perspectives of shipping. With the help of machine learning, meaningful knowledge and complex relationships can be extracted from high-dimensional historical data. In this study, machine learning models were developed to predict the fuel consumption of harbour vessels with ship-related and meteorological factors. The superiority of machine learning models over statistical linear regression model (Ridge regression) has been proved. This study further investigated whether the use of meteorological factors enhances the prediction of fuel consumption. A case study on the prediction of tugboat fuel consumption was conducted. The Random Forest model outperformed the other models. Comparative experiments showed that meteorological factors collectively add value to the fuel consumption prediction, which enhances the accuracy from 0.7 to 38.9%. The potential uses of the prediction results are highlighted in terms of both operational management and environmental evaluation aspects.