Single bacteria spore encapsulation through layer-by-layer self-assembly of poly(dimethyldiallyl ammonium chloride) and silica nanoparticles for self-healing concrete

Self-healing of cracks improves durability and reduces maintenance of concrete. Microbial induced calcite precipitation is a novel approach to engage self-healing in concrete, and bacteria spores are protected from direct contact with the surrounding cement matrix to maintain their viability. This s...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao, Xi, Unluer, Cise, Chu, Shaohua, Yang, En-Hua
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170169
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Self-healing of cracks improves durability and reduces maintenance of concrete. Microbial induced calcite precipitation is a novel approach to engage self-healing in concrete, and bacteria spores are protected from direct contact with the surrounding cement matrix to maintain their viability. This study proposes a novel single bacteria spore capsule via layer-by-layer (LbL) self-assembly of poly(dimethyldiallyl ammonium chloride) and silica nanoparticles to enhance the consistency of healing as well as to minimize the negative impact on the mechanical properties of the resulting concrete. The resulting single bacteria spore capsule has a size of 1 μm and the inclusion of the capsules dose not compromise the compressive strength of the matrix. Cement paste incorporating the capsules shows complete closure of large crack of few hundred microns and complete recovery of transport property. Healing products are observed along the entire crack from the surface to the interior.