iMAT: energy-efficient in-memory acceleration for ternary neural networks with sparse dot product

Ternary Neural Networks (TNNs) achieve an excellent trade-off between model size, speed, and accuracy, quantizing weights and activations into ternary values {+1, 0, -1}. The ternary multiplication operations in TNNs equal light-weight bitwise operations, favorably in In-Memory Computing (IMC) platf...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhu, Shien, Huai, Shuo, Xiong, Guochu, Liu, Weichen
其他作者: School of Computer Science and Engineering
格式: Conference or Workshop Item
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/170218
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!