Oxygen-bridged stabilization of single atomic W on Rh metallenes for robust and efficient pH-universal hydrogen evolution
Highly efficient and durable electrocatalysts are of the utmost importance for the sustainable generation of clean hydrogen by water electrolysis. Here, we present a report of an atomically thin rhodium metallene incorporated with oxygen-bridged single atomic tungsten (Rh-O-W) as a high-performance...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170282 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Highly efficient and durable electrocatalysts are of the utmost importance for the sustainable generation of clean hydrogen by water electrolysis. Here, we present a report of an atomically thin rhodium metallene incorporated with oxygen-bridged single atomic tungsten (Rh-O-W) as a high-performance electrocatalyst for pH-universal hydrogen evolution reaction. The Rh-O-W metallene delivers ascendant electrocatalytic HER performance, characterized by exceptionally low overpotentials, ultrahigh mass activities, excellent turnover frequencies, and robust stability with negligible deactivation, in pH-universal electrolytes, outperforming that of benchmark Pt/C, Rh/C and numerous other reported precious-metal HER catalysts. Interestingly, the promoting feature of -O-W single atomic sites is understood via operando X-ray absorption spectroscopy characterization and theoretical calculations. On account of electron transfer and equilibration processes take place between the binary components of Rh-O-W metallenes, fine-tuning of the density of states and electron localization at Rh active sites is attained, hence promoting HER via a near-optimal hydrogen adsorption. |
---|