Atomically dispersed Fe−N₄ and Ni-N₄ independent sites enable bidirectional sulfur redox electrocatalysis

Single-atom catalysts (SACs) with high atom utilization and outstanding catalytic selectivity are useful for improving battery performance. Herein, atomically dispersed Ni-N4 and Fe-N4 dual sites coanchored on porous hollow carbon nanocages (Ni-Fe-NC) are fabricated and deployed as the sulfur host f...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang, Jin-Lin, Yang, Peihua, Cai, Da-Qian, Wang, Zhe, Fan, Hong Jin
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170325
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Single-atom catalysts (SACs) with high atom utilization and outstanding catalytic selectivity are useful for improving battery performance. Herein, atomically dispersed Ni-N4 and Fe-N4 dual sites coanchored on porous hollow carbon nanocages (Ni-Fe-NC) are fabricated and deployed as the sulfur host for Li-S battery. The hollow and conductive carbon matrix promotes electron transfer and also accommodates volume fluctuation during cycling. Notably, the high d band center of Fe in Fe-N4 site demonstrates strong polysulfide affinity, leading to an accelerated sulfur reduction reaction. Meanwhile, Li2S on the Ni-N4 site delivers a metallic property with high S 2p electron density of states around the Femi energy level, enabling a low sulfur evolution reaction barrier. The dual catalytic effect on Ni-Fe-NC endows sulfur cathode high energy density, prolonged lifespan, and low polarization.