On the nonexistence of semi-regular relative difference sets

In this paper, we study semi-regular relative difference sets. We give some nonexistence results on abelian (mn,n,mn,m) relative difference sets. In particular, we focus on the case when m is prime and show that, for any fixed integer n≥2, there are at most finitely many primes p for which an abelia...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Leung, Ka Hin, Schmidt, Bernhard, Zhang, Tao
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/170341
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this paper, we study semi-regular relative difference sets. We give some nonexistence results on abelian (mn,n,mn,m) relative difference sets. In particular, we focus on the case when m is prime and show that, for any fixed integer n≥2, there are at most finitely many primes p for which an abelian (pn,n,pn,p) relative difference set may exist. We illustrate our results by investigating the existence of (mn,n,mn,m) relative difference sets with m∈{2,3,4} in detail.