Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation
The evolution of the plastic zone underneath the indenter is challenging to be described during nanoindentation, which is recently known to be crucial to establish a constitutive model that features the plastic properties of the substrate materials based on their indentation responses. Using molecul...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170347 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-170347 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1703472023-09-08T03:31:35Z Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation Long, Xu Shen, Ziyi Jia, Qipu Li, Jiao Dong, Ruipeng Su, Yutai Yang, Xin Zhou, Kun School of Mechanical and Aerospace Engineering Engineering::Civil engineering Dimensional Analysis Elastoplasticity The evolution of the plastic zone underneath the indenter is challenging to be described during nanoindentation, which is recently known to be crucial to establish a constitutive model that features the plastic properties of the substrate materials based on their indentation responses. Using molecular dynamics and axisymmetric finite element (FE) simulations in this study, we show that the plastic zone shape in the elastoplastic materials is hemispherical in a broad range of length scales under a three-sided pyramid-shaped Berkovich indenter. By considering the critical factors of the applied load–penetration depth (P–h) curve, dimensional analysis is performed to derive dimensionless functions regarding the radius of the hemispherical plastic zone. For the loading and unloading stages in extensive FE simulations, a set of polynomial functions are proposed by associating the instantaneous and residual plastic zone radii with constitutive parameters. In addition to Young's modulus and the hardening exponent, the ratio of the representative stress to the reduced modulus is found to be crucial for predicting the plastic deformation. Lastly, the proposed dimensionless function reveals that the plastic zone radii are drastically different for three representative materials with identical P–h curves as confirmed by three independent methods. This result suggests that the proposed plastic zone radius in the dimensionless analysis helps to overcome the challenging uniqueness issue for decades to determine the unique elastoplastic properties of materials based on nanoindentation responses. This work was supported by the National Natural Science Foundation of China (Nos. 52175148, and 51508464), the Natural Science Foundation of Shaanxi Province (No. 2021 KW-25), the Open Cooperation Innovation Fund of Xi'an Modern Chemistry Research Institute (No. SYJJ20210409), and the Fundamental Research Funds for the Central Universities (No. 3102018ZY015). 2023-09-08T03:31:35Z 2023-09-08T03:31:35Z 2022 Journal Article Long, X., Shen, Z., Jia, Q., Li, J., Dong, R., Su, Y., Yang, X. & Zhou, K. (2022). Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation. Mechanics of Materials, 175, 104485-. https://dx.doi.org/10.1016/j.mechmat.2022.104485 0167-6636 https://hdl.handle.net/10356/170347 10.1016/j.mechmat.2022.104485 2-s2.0-85139592569 175 104485 en Mechanics of Materials © 2022 Elsevier Ltd. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Civil engineering Dimensional Analysis Elastoplasticity |
spellingShingle |
Engineering::Civil engineering Dimensional Analysis Elastoplasticity Long, Xu Shen, Ziyi Jia, Qipu Li, Jiao Dong, Ruipeng Su, Yutai Yang, Xin Zhou, Kun Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
description |
The evolution of the plastic zone underneath the indenter is challenging to be described during nanoindentation, which is recently known to be crucial to establish a constitutive model that features the plastic properties of the substrate materials based on their indentation responses. Using molecular dynamics and axisymmetric finite element (FE) simulations in this study, we show that the plastic zone shape in the elastoplastic materials is hemispherical in a broad range of length scales under a three-sided pyramid-shaped Berkovich indenter. By considering the critical factors of the applied load–penetration depth (P–h) curve, dimensional analysis is performed to derive dimensionless functions regarding the radius of the hemispherical plastic zone. For the loading and unloading stages in extensive FE simulations, a set of polynomial functions are proposed by associating the instantaneous and residual plastic zone radii with constitutive parameters. In addition to Young's modulus and the hardening exponent, the ratio of the representative stress to the reduced modulus is found to be crucial for predicting the plastic deformation. Lastly, the proposed dimensionless function reveals that the plastic zone radii are drastically different for three representative materials with identical P–h curves as confirmed by three independent methods. This result suggests that the proposed plastic zone radius in the dimensionless analysis helps to overcome the challenging uniqueness issue for decades to determine the unique elastoplastic properties of materials based on nanoindentation responses. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Long, Xu Shen, Ziyi Jia, Qipu Li, Jiao Dong, Ruipeng Su, Yutai Yang, Xin Zhou, Kun |
format |
Article |
author |
Long, Xu Shen, Ziyi Jia, Qipu Li, Jiao Dong, Ruipeng Su, Yutai Yang, Xin Zhou, Kun |
author_sort |
Long, Xu |
title |
Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
title_short |
Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
title_full |
Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
title_fullStr |
Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
title_full_unstemmed |
Determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
title_sort |
determine the unique constitutive properties of elastoplastic materials from their plastic zone evolution under nanoindentation |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/170347 |
_version_ |
1779156770695938048 |