Unraveling process-microstructure-property correlations in powder-bed fusion additive manufacturing through information-rich surface features with deep learning
A machine learning (ML)–based framework has been developed to optimize the process parameters and unravel the paramount process–microstructure–property (PMP) relationships rapidly and precisely, which is demonstrated using electron beam melting (EBM®)-processed Ti–6Al–4V alloy. The process maps are...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170435 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |