Unraveling process-microstructure-property correlations in powder-bed fusion additive manufacturing through information-rich surface features with deep learning
A machine learning (ML)–based framework has been developed to optimize the process parameters and unravel the paramount process–microstructure–property (PMP) relationships rapidly and precisely, which is demonstrated using electron beam melting (EBM®)-processed Ti–6Al–4V alloy. The process maps are...
Saved in:
Main Authors: | Wang, Chengcheng, Chandra, Shubham, Huang, Sheng, Tor, Shu Beng, Tan, Xipeng |
---|---|
其他作者: | School of Mechanical and Aerospace Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170435 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
A semi-supervised machine learning approach for in-process monitoring of laser powder bed fusion
由: Nguyen, Ngoc Vu, et al.
出版: (2023) -
Review of machine learning applications in powder bed fusion technology for part production
由: Huang, De Jun, et al.
出版: (2018) -
Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
由: Sing, Swee Leong, et al.
出版: (2021) -
Microstructures and mechanical properties of additively manufactured Fe–21Mn-0.6C TWIP steel using laser powder bed fusion
由: Chen, Youyun, et al.
出版: (2024) -
Semi-supervised machine learning of optical in-situ monitoring data for anomaly detection in laser powder bed fusion
由: Nguyen, Ngoc Vu, et al.
出版: (2023)