Vacancy pair-induced charge rebalancing with surface and interfacial dual polarization for CO₂ photoreduction

Poor charge kinetics greatly reduce the efficiency of photocatalytic CO2reduction. Herein, a synchronous surface and interfacial dual polarization strategy was developed to promote charge separation. Bi-O vacancy pairs in Bi24O31Br10atomic layers can trigger strong coupling between black phosphorus...

Full description

Saved in:
Bibliographic Details
Main Authors: Di, Jun, Zhu, Xingwang, Hao, Gazi, Zhu, Chao, Chen, Hailong., Liu, Qiaoxi, Duan, Ruihuan, Hu, Hongwei, Zhang, Yi, Xiong, Jun, Long, Ran, Xia, Jiexiang, Weng, Yu-Xiang, Jiang, Wei, Liu, Zheng
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170463
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Poor charge kinetics greatly reduce the efficiency of photocatalytic CO2reduction. Herein, a synchronous surface and interfacial dual polarization strategy was developed to promote charge separation. Bi-O vacancy pairs in Bi24O31Br10atomic layers can trigger strong coupling between black phosphorus (BP) and Bi24O31Br10, forming a restructured closely contacted BP-Bi24O31Br10configuration with a charge-redistributed interface via electronegativity-induced charge rebalancing. The Bi-O vacancy pairs on the surface of Bi24O31Br10and restructured BP/Bi24O31Br10interface enable synchronous surface and interfacial dual polarization, creating an electronic bridge from the interior of Bi24O31Br10to the BP surface, as proven by ultrafast transient absorption spectroscopy. This configuration favors a low CO2activation energy barrier, effectively stabilizes COOH∗ intermediates, and decreases the rate-determining step energy barrier. Benefiting from these features, the stable CO generation rate of optimized BP-Bi24O31Br10reaches up to 39.8 μmol g-1h-1via CO2photoreduction in water, which is 2.4 and 46.8 times higher than those of defective Bi24O31Br10atomic layers and defect-poor Bi24O31Br10, respectively. This study provides insights into the synchronous design of surface defects and restructured interfaces for dual polarization.