Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A

The biochemical consequences induced by xenobiotic stress are featured in dose-response and time-resolved landscapes. Understanding the dynamic process of cellular adaptations is crucial in conducting the risk assessment for chemical exposure. As one of the most phenotype-related omics, metabolome i...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Haoduo., Liu, Min, Yang, Junjie, Chen, Yuyang, Fang, Mingliang
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170466
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-170466
record_format dspace
spelling sg-ntu-dr.10356-1704662023-09-13T00:33:27Z Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A Zhao, Haoduo. Liu, Min Yang, Junjie Chen, Yuyang Fang, Mingliang School of Civil and Environmental Engineering Nanyang Environment and Water Research Institute Engineering::Environmental engineering Dysregulation Correlation Metabolic Adaption The biochemical consequences induced by xenobiotic stress are featured in dose-response and time-resolved landscapes. Understanding the dynamic process of cellular adaptations is crucial in conducting the risk assessment for chemical exposure. As one of the most phenotype-related omics, metabolome in response to environmental stress can vary from seconds to days. Up to now, very few dynamic metabolomics studies have been conducted to provide time-dependent mechanistic interpretations in understanding xenobiotics-induced cellular adaptations. This study aims to explore the time-resolved metabolite dysregulation manner and dynamically perturbed biological functions in MCF-7 cells exposed to bisphenol A (BPA), a well-known endocrine-disrupting chemical. By sampling at 11 time points from several minutes to hours, thirty seven significantly dysregulated metabolites were identified, ranging from amino acids, fatty acids, carboxylic acids and nucleoside phosphate compounds. The metabolites in different pathways basically showed distinct time-resolved changing patterns, while those within the common class or same pathways showed similar and synchronized dysregulation behaviors. The pathway enrichment analysis suggested that purine metabolism, pyrimidine metabolism, aminoacyl-tRNA biosynthesis as well as glutamine/glutamate (GABA) metabolism pathways were heavily disturbed. As exposure event continued, MCF-7 cells went through multiple sequential metabolic adaptations from cell proliferation to energy metabolism, which indicated an enhancing cellular requirement for elevated energy homeostasis, oxidative stress response and ER-α mediated cell growth. We further focused on the time-dependent metabolite dysregulation behavior in purine and pyrimidine metabolism, and identified the impaired glycolysis and oxidative phosphorylation by redox imbalance. Lastly, we established a restricted cubic spline-based model to fit and predict metabolite’s full range dysregulation cartography, with metabolite’ sensitivity comparisons retrieved and novel biomarkers suggested. Overall, the results indicated that 8 h BPA exposure leaded to global dynamic metabolome adaptions including amino acid, nucleoside and sugar metabolism disorders, and the dysregulated metabolites with interfered pathways at different stages are of significant temporal distinctions. Ministry of Education (MOE) This work is supported by Singapore Ministry of Education Academic Research Fund Tier 1 (No. 04MNP000567C120) and Startup Grant of Fudan University (No. JIH 1829010Y). 2023-09-13T00:33:26Z 2023-09-13T00:33:26Z 2023 Journal Article Zhao, H., Liu, M., Yang, J., Chen, Y. & Fang, M. (2023). Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A. Frontiers of Environmental Science and Engineering, 17(1), 1-15. https://dx.doi.org/10.1007/s11783-023-1604-5 2095-221X https://hdl.handle.net/10356/170466 10.1007/s11783-023-1604-5 2-s2.0-85135624500 1 17 1 15 en 04MNP000567C120 Frontiers of Environmental Science and Engineering © 2023 Higher Education Press. All rights reserved.
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Environmental engineering
Dysregulation Correlation
Metabolic Adaption
spellingShingle Engineering::Environmental engineering
Dysregulation Correlation
Metabolic Adaption
Zhao, Haoduo.
Liu, Min
Yang, Junjie
Chen, Yuyang
Fang, Mingliang
Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
description The biochemical consequences induced by xenobiotic stress are featured in dose-response and time-resolved landscapes. Understanding the dynamic process of cellular adaptations is crucial in conducting the risk assessment for chemical exposure. As one of the most phenotype-related omics, metabolome in response to environmental stress can vary from seconds to days. Up to now, very few dynamic metabolomics studies have been conducted to provide time-dependent mechanistic interpretations in understanding xenobiotics-induced cellular adaptations. This study aims to explore the time-resolved metabolite dysregulation manner and dynamically perturbed biological functions in MCF-7 cells exposed to bisphenol A (BPA), a well-known endocrine-disrupting chemical. By sampling at 11 time points from several minutes to hours, thirty seven significantly dysregulated metabolites were identified, ranging from amino acids, fatty acids, carboxylic acids and nucleoside phosphate compounds. The metabolites in different pathways basically showed distinct time-resolved changing patterns, while those within the common class or same pathways showed similar and synchronized dysregulation behaviors. The pathway enrichment analysis suggested that purine metabolism, pyrimidine metabolism, aminoacyl-tRNA biosynthesis as well as glutamine/glutamate (GABA) metabolism pathways were heavily disturbed. As exposure event continued, MCF-7 cells went through multiple sequential metabolic adaptations from cell proliferation to energy metabolism, which indicated an enhancing cellular requirement for elevated energy homeostasis, oxidative stress response and ER-α mediated cell growth. We further focused on the time-dependent metabolite dysregulation behavior in purine and pyrimidine metabolism, and identified the impaired glycolysis and oxidative phosphorylation by redox imbalance. Lastly, we established a restricted cubic spline-based model to fit and predict metabolite’s full range dysregulation cartography, with metabolite’ sensitivity comparisons retrieved and novel biomarkers suggested. Overall, the results indicated that 8 h BPA exposure leaded to global dynamic metabolome adaptions including amino acid, nucleoside and sugar metabolism disorders, and the dysregulated metabolites with interfered pathways at different stages are of significant temporal distinctions.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Zhao, Haoduo.
Liu, Min
Yang, Junjie
Chen, Yuyang
Fang, Mingliang
format Article
author Zhao, Haoduo.
Liu, Min
Yang, Junjie
Chen, Yuyang
Fang, Mingliang
author_sort Zhao, Haoduo.
title Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
title_short Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
title_full Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
title_fullStr Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
title_full_unstemmed Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
title_sort time-dependent metabolomics uncover dynamic metabolic adaptions in mcf-7 cells exposed to bisphenol a
publishDate 2023
url https://hdl.handle.net/10356/170466
_version_ 1779156806895927296