Spiral microstrip antenna

In this knowledge based era, people thirst for information on the move. This is made possible with cellular network, wireless network, Bluetooth, WiMAX etc. Antennas are an integral part of these networks. However, antennas are generally unable to support such a wide range of frequencies for use by...

Full description

Saved in:
Bibliographic Details
Main Author: Kee, Sen Chee.
Other Authors: Lee Ching Kwang
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/17060
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-17060
record_format dspace
spelling sg-ntu-dr.10356-170602023-07-07T17:52:05Z Spiral microstrip antenna Kee, Sen Chee. Lee Ching Kwang School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Antennas, wave guides, microwaves, radar, radio In this knowledge based era, people thirst for information on the move. This is made possible with cellular network, wireless network, Bluetooth, WiMAX etc. Antennas are an integral part of these networks. However, antennas are generally unable to support such a wide range of frequencies for use by the different technologies. Hence this project aims to design and fabricate a Frequency Independent Antenna, commonly in the form of a Spiral Antenna which has a wideband capability to achieve a single antenna for all common communication technologies in the frequency band from 0.6 GHz to 7GHz. Antennas are required to be fed through various means with the input terminal port impedance typically of 50 Ω. However, the impedance of a spiral antenna is rarely 50 Ω hence the impedance of the antenna and the terminal impedance rarely match, resulting in transmission loss. The spiral antenna which is a balanced system is typically fed by a coaxial cable which is an unbalanced system, therefore a balun (balanced to unbalanced) has to be inserted between the spiral antenna and the coaxial cable. This balun includes an impedance matching circuit for impedance transformation from the spiral antenna impedance to the coaxial impedance. The objective of this final year project is to study on frequency independent antenna, the equiangular spiral antenna which has a wideband capability, and a wideband balun for use with the equiangular spiral antenna. The designs are simulated to predict the performance of the two components; the equiangular spiral antenna and the balun. The equiangular spiral antenna and the balun are fabricated and measured to verify its performance. Bachelor of Engineering 2009-05-29T04:52:07Z 2009-05-29T04:52:07Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/17060 en Nanyang Technological University 117 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Antennas, wave guides, microwaves, radar, radio
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Antennas, wave guides, microwaves, radar, radio
Kee, Sen Chee.
Spiral microstrip antenna
description In this knowledge based era, people thirst for information on the move. This is made possible with cellular network, wireless network, Bluetooth, WiMAX etc. Antennas are an integral part of these networks. However, antennas are generally unable to support such a wide range of frequencies for use by the different technologies. Hence this project aims to design and fabricate a Frequency Independent Antenna, commonly in the form of a Spiral Antenna which has a wideband capability to achieve a single antenna for all common communication technologies in the frequency band from 0.6 GHz to 7GHz. Antennas are required to be fed through various means with the input terminal port impedance typically of 50 Ω. However, the impedance of a spiral antenna is rarely 50 Ω hence the impedance of the antenna and the terminal impedance rarely match, resulting in transmission loss. The spiral antenna which is a balanced system is typically fed by a coaxial cable which is an unbalanced system, therefore a balun (balanced to unbalanced) has to be inserted between the spiral antenna and the coaxial cable. This balun includes an impedance matching circuit for impedance transformation from the spiral antenna impedance to the coaxial impedance. The objective of this final year project is to study on frequency independent antenna, the equiangular spiral antenna which has a wideband capability, and a wideband balun for use with the equiangular spiral antenna. The designs are simulated to predict the performance of the two components; the equiangular spiral antenna and the balun. The equiangular spiral antenna and the balun are fabricated and measured to verify its performance.
author2 Lee Ching Kwang
author_facet Lee Ching Kwang
Kee, Sen Chee.
format Final Year Project
author Kee, Sen Chee.
author_sort Kee, Sen Chee.
title Spiral microstrip antenna
title_short Spiral microstrip antenna
title_full Spiral microstrip antenna
title_fullStr Spiral microstrip antenna
title_full_unstemmed Spiral microstrip antenna
title_sort spiral microstrip antenna
publishDate 2009
url http://hdl.handle.net/10356/17060
_version_ 1772825495222616064