Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum
Optical metasurfaces with high quality factors (Q-factors) of chiral resonances can boost substantially light-matter interaction for various applications of chiral response in ultrathin, active, and nonlinear metadevices. However, current approaches lack the flexibility to enhance and tune the chira...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170855 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Optical metasurfaces with high quality factors (Q-factors) of chiral resonances can boost substantially light-matter interaction for various applications of chiral response in ultrathin, active, and nonlinear metadevices. However, current approaches lack the flexibility to enhance and tune the chirality and Q-factor simultaneously. Here, we suggest a design of chiral metasurface supporting bound state in the continuum (BIC) and demonstrate experimentally chiroptical responses with ultra-high Q-factors and near-perfect circular dichroism (CD = 0.93) at optical frequencies. We employ the symmetry-reduced meta-atoms with high birefringence supporting winding elliptical eigenstate polarizations with opposite helicity. It provides a convenient way for achieving the maximal planar chirality tuned by either breaking in-plane structure symmetry or changing illumination angle. Beyond linear CD, we also achieved strong near-field enhancement CD and near-unitary nonlinear CD in the same planar chiral metasurface design with circular eigen-polarization. Sharply resonant chirality realized in planar metasurfaces promises various practical applications including chiral lasers and chiral nonlinear filters. |
---|