Hermitian matrices of roots of unity and their characteristic polynomials

We investigate spectral conditions on Hermitian matrices of roots of unity. Our main results are conjecturally sharp upper bounds on the number of residue classes of the characteristic polynomial of such matrices modulo ideals generated by powers of (1−ζ), where ζ is a root of unity. We also prove a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Greaves, Gary Royden Watson, Woo, Chin Jian
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/170926
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We investigate spectral conditions on Hermitian matrices of roots of unity. Our main results are conjecturally sharp upper bounds on the number of residue classes of the characteristic polynomial of such matrices modulo ideals generated by powers of (1−ζ), where ζ is a root of unity. We also prove a generalisation of a classical result of Harary and Schwenk about a relation for traces of powers of a graph-adjacency matrix, which is a crucial ingredient for the proofs of our main results.