LCReg: long-tailed image classification with latent categories based recognition

In this work, we tackle the challenging problem of long-tailed image recognition. Previous long-tailed recognition approaches mainly focus on data augmentation or re-balancing strategies for the tail classes to give them more attention during model training. However, these methods are limited by the...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Weide, Wu, Zhonghua, Wang, Yiming, Ding, Henghui, Liu, Fayao, Lin, Jie, Lin, Guosheng
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/170932
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this work, we tackle the challenging problem of long-tailed image recognition. Previous long-tailed recognition approaches mainly focus on data augmentation or re-balancing strategies for the tail classes to give them more attention during model training. However, these methods are limited by the small number of training images for the tail classes, which results in poor feature representations. To address this issue, we propose the Latent Categories based long-tail Recognition (LCReg) method. Our hypothesis is that common latent features shared by head and tail classes can be used to improve feature representation. Specifically, we learn a set of class-agnostic latent features shared by both head and tail classes, and then use semantic data augmentation on the latent features to implicitly increase the diversity of the training sample. We conduct extensive experiments on five long-tailed image recognition datasets, and the results show that our proposed method significantly improves the baselines.