CPMR: context-aware incremental sequential recommendation with pseudo-multi-task learning
The motivations of users to make interactions can be divided into static preference and dynamic interest. To accurately model user representations over time, recent studies in sequential recommendation utilize information propagation and evolution to mine from batches of arriving interactions. Howev...
Saved in:
Main Authors: | Bian, Qingtian, Xu, Jiaxing, Fang, Hui, Ke, Yiping |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170988 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
MODELING DYNAMIC ASPECTS OF CONTEXT-AWARE RECOMMENDER SYSTEMS
由: THILINA MADUSANKA THANTHRIWATTA
出版: (2021) -
Temporal attention graph-optimized networks for sequential recommendation
由: Pathak, Siddhant
出版: (2024) -
An inner-enterprise knowledge recommender system
由: Zhen, L., et al.
出版: (2014) -
EXPLOITING CROSS-CHANNEL INFORMATION FOR PERSONALIZED RECOMMENDATION
由: WANG XIANG
出版: (2019) -
Interactive Music Recommendation: Context,Content and Collaborative Filtering
由: WANG XINXI
出版: (2015)