Quantitative proteomics of medium-sized extracellular vesicle-enriched plasma of lacunar infarction for the discovery of prognostic biomarkers

Lacunar infarction (LACI), a subtype of acute ischemic stroke, has poor mid- to long-term prognosis due to recurrent vascular events or incident dementia which is difficult to predict using existing clinical data. Herein, we aim to discover blood-based biomarkers for LACI as a complementary prognost...

全面介紹

Saved in:
書目詳細資料
Main Authors: Datta, Arnab, Chen, Christopher, Gao, Yong-Gui, Sze, Siu Kwan
其他作者: School of Biological Sciences
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/170999
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Lacunar infarction (LACI), a subtype of acute ischemic stroke, has poor mid- to long-term prognosis due to recurrent vascular events or incident dementia which is difficult to predict using existing clinical data. Herein, we aim to discover blood-based biomarkers for LACI as a complementary prognostic tool. Convalescent plasma was collected from forty-five patients following a non-disabling LACI along with seventeen matched control subjects. The patients were followed up prospectively for up to five years to record an occurrence of adverse outcome and grouped accordingly (i.e., LACI-no adverse outcome, LACI-recurrent vascular event, and LACI-cognitive decline without any recurrence of vascular events). Medium-sized extracellular vesicles (MEVs), isolated from the pooled plasma of four groups, were analyzed by stable isotope labeling and 2D-LC-MS/MS. Out of 573 (FDR < 1%) quantified proteins, 146 showed significant changes in at least one LACI group when compared to matched healthy control. A systems analysis revealed that major elements (~85%) of the MEV proteome are different from the proteome of small-sized extracellular vesicles obtained from the same pooled plasma. The altered MEV proteins in LACI patients are mostly reduced in abundance. The majority of the shortlisted MEV proteins are not linked to commonly studied biological processes such as coagulation, fibrinolysis, or inflammation. Instead, they are linked to oxygen-glucose deprivation, endo-lysosomal trafficking, glucose transport, and iron homeostasis. The dataset is provided as a web-based data resource to facilitate meta-analysis, data integration, and targeted large-scale validation.