Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity

Manipulating the intrinsic activity of heterogeneous catalysts at the atomic level is an effective strategy to improve the electrocatalytic performances but remains challenging. Here, atomically dispersed Ni anchored on CeO2 particles entrenched on peanut-shaped hollow nitrogen-doped carbon structur...

Full description

Saved in:
Bibliographic Details
Main Authors: Pei, Zhihao, Zhang, Huabin, Wu, Zhi-Peng, Lu, Xue Feng, Luan, Deyan, Lou, David Xiong Wen
Other Authors: School of Chemistry, Chemical Engineering and Biotechnology
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171074
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Manipulating the intrinsic activity of heterogeneous catalysts at the atomic level is an effective strategy to improve the electrocatalytic performances but remains challenging. Here, atomically dispersed Ni anchored on CeO2 particles entrenched on peanut-shaped hollow nitrogen-doped carbon structures (a-Ni/CeO2@NC) is rationally designed and synthesized. The as-prepared a-Ni/CeO2@NC catalyst exhibits substantially boosted intrinsic activity and greatly reduced overpotential for the electrocatalytic oxygen evolution reaction. Experimental and theoretical results demonstrate that the decoration of isolated Ni species over the CeO2 induces electronic coupling and redistribution, thus resulting in the activation of the adjacent Ce sites around Ni atoms and greatly accelerated oxygen evolution kinetics. This work provides a promising strategy to explore the electronic regulation and intrinsic activity improvement at the atomic level, thereby improving the electrocatalytic activity.