Physics-informed neural networks for low Reynolds number flows over cylinder

Physics-informed neural network (PINN) architectures are recent developments that can act as surrogate models for fluid dynamics in order to reduce computational costs. PINNs make use of deep neural networks, where the Navier-Stokes equation and freestream boundary conditions are used as losses of t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ang, Elijah Hao Wei, Wang, Guangjian, Ng, Bing Feng
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/171076
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English