ProJect: a powerful mixed-model missing value imputation method

Missing values (MVs) can adversely impact data analysis and machine-learning model development. We propose a novel mixed-model method for missing value imputation (MVI). This method, ProJect (short for Protein inJection), is a powerful and meaningful improvement over existing MVI methods such as Bay...

Full description

Saved in:
Bibliographic Details
Main Authors: Kong, Weijia, Wong, Bertrand Jern Han, Hui, Harvard Wai Hann, Lim, Kai-Peng, Wang, Yulan, Wong, Limsoon, Goh, Wilson Wen Bin
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171093
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Missing values (MVs) can adversely impact data analysis and machine-learning model development. We propose a novel mixed-model method for missing value imputation (MVI). This method, ProJect (short for Protein inJection), is a powerful and meaningful improvement over existing MVI methods such as Bayesian principal component analysis (PCA), probabilistic PCA, local least squares and quantile regression imputation of left-censored data. We rigorously tested ProJect on various high-throughput data types, including genomics and mass spectrometry (MS)-based proteomics. Specifically, we utilized renal cancer (RC) data acquired using DIA-SWATH, ovarian cancer (OC) data acquired using DIA-MS, bladder (BladderBatch) and glioblastoma (GBM) microarray gene expression dataset. Our results demonstrate that ProJect consistently performs better than other referenced MVI methods. It achieves the lowest normalized root mean square error (on average, scoring 45.92% less error in RC_C, 27.37% in RC_full, 29.22% in OC, 23.65% in BladderBatch and 20.20% in GBM relative to the closest competing method) and the Procrustes sum of squared error (Procrustes SS) (exhibits 79.71% less error in RC_C, 38.36% in RC full, 18.13% in OC, 74.74% in BladderBatch and 30.79% in GBM compared to the next best method). ProJect also leads with the highest correlation coefficient among all types of MV combinations (0.64% higher in RC_C, 0.24% in RC full, 0.55% in OC, 0.39% in BladderBatch and 0.27% in GBM versus the second-best performing method). ProJect's key strength is its ability to handle different types of MVs commonly found in real-world data. Unlike most MVI methods that are designed to handle only one type of MV, ProJect employs a decision-making algorithm that first determines if an MV is missing at random or missing not at random. It then employs targeted imputation strategies for each MV type, resulting in more accurate and reliable imputation outcomes. An R implementation of ProJect is available at https://github.com/miaomiao6606/ProJect.