Investigation of the mechanical properties of polyimide fiber/polyamide 12 composites printed by multi jet fusion
Multi Jet Fusion (MJF) has attracted extensive attention because of its ability to print support-free complex structures. However, the mechanical properties of MJF-printed polymer parts are still unsatisfactory for certain industrial requirements. Herein, by leveraging the fibre reinforcement effect...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171155 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Multi Jet Fusion (MJF) has attracted extensive attention because of its ability to print support-free complex structures. However, the mechanical properties of MJF-printed polymer parts are still unsatisfactory for certain industrial requirements. Herein, by leveraging the fibre reinforcement effect and high specific strength of polyimide (PI) fibres, this work developed PI/polyamide 12 (PA12) composites with largely enhanced mechanical performance via MJF. Specifically, the tensile strength and modulus were increased by 43% and 42%, and the flexural strength and modulus were improved by 39% and 46%, respectively, compared to those of the neat PA12 parts. Furthermore, the incorporation of lightweight PI fibres endowed the composites with high specific tensile strength (67.60 kN·m/kg) and specific flexural strength (93.70 kN·m/kg), which are superior to those of MJF-printed PA12 composites reinforced with other fibres. This work provides new insights into enhancing the mechanical performance of lightweight parts printed by MJF and other powder-based techniques. |
---|