On the Hamiltonian and geometric structure of Langmuir circulation
The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows. |
---|