An adaptive barrier-mooring system for coastal floating solar farms
Floating solar farms in the coastal areas are subjected to more complex environmental loads of tides and waves than lakes or reservoirs with greater challenges to their mooring. At present, mooring systems based on elastic cables are prevalent for coastal floating solar farms, but these cables tend...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171286 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Floating solar farms in the coastal areas are subjected to more complex environmental loads of tides and waves than lakes or reservoirs with greater challenges to their mooring. At present, mooring systems based on elastic cables are prevalent for coastal floating solar farms, but these cables tend to be expensive and require periodic retuning with higher maintenance costs. In this study, we propose a new alternative of an adaptive barrier-mooring system which is consisted of perimeter pontoons, barriers, clump weights, mooring lines and anchors as a new alternative. The performance of the adaptive barrier-mooring system installed on the leading edge of a coastal floating solar farm is first examined through static analysis. The results showed that the new mooring system enables the floating solar farm to adapt up to 36% of water depth without introducing slack in the mooring cables. In addition, the resulting nonlinear mooring stiffness and lower pulling-out forces on the anchors are also both beneficial to the system design. Subsequently, a floating solar farm model with four different mooring systems, including adaptive barrier-mooring systems as well as elastic mooring cables, were tested for dynamic performance in a wave flume in the laboratory with Froude similarity under both incident waves as well as water level changes. The experimental results demonstrated the good performance of the adaptive barrier-mooring system in terms of higher platform stability over a large tidal range. Finally, the construction and maintenance costs of the adaptive barrier-mooring system should be lower compared to elastic mooring systems due to the use of common materials without the need for periodic tightening. We hope that the adaptive barrier-mooring system can further aid the development of coastal floating solar farms in the future. |
---|