Biomimetic nanozyme-decorated hydrogels with H₂O₂-activated oxygenation for modulating immune microenvironment in diabetic wound

Diabetic foot ulcers (DFUs) remain a devastating threat to human health. While hydrogels are promising systems for DFU-based wound management, their effectiveness is often hindered by the immune response and hostile wound microenvironment associated with the uncontrollable accumulation of reactive o...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Yue, Wang, Dongdong, Qian, Tianwei, Zhang, Junmin, Li, Zuhao, Gong, Qiaoyun, Ren, Xiangzhong, Zhao, Yanli
Other Authors: School of Chemistry, Chemical Engineering and Biotechnology
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171320
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Diabetic foot ulcers (DFUs) remain a devastating threat to human health. While hydrogels are promising systems for DFU-based wound management, their effectiveness is often hindered by the immune response and hostile wound microenvironment associated with the uncontrollable accumulation of reactive oxygen species and hypoxia. Here, we develop a therapeutic wound dressing using a biomimetic hydrogel system with the decoration of catalase-mimic nanozyme, namely, MnCoO@PDA/CPH. The hydrogel can be designed to match the mechanical and electrical cues of skins simultaneously with H2O2-activated oxygenation ability. As a proof of concept, DFU-based rat models are created to validate the therapeutic efficacy of the MnCoO@PDA/CPH hydrogel in vivo. The results indicate that the developed hydrogel can promote DFU healing and improve the quality of the healed wound as featured by alleviated proinflammatory, increased re-epithelialization, highly ordered collagen deposition, and functional blood vessel growth.