A highly stretchable, self-healable, transparent and solid-state poly(ionic liquid) filler for high-performance dielectric elastomer actuators

By incorporating fillers into dielectric elastomers, electromechanical sensitivities can be enhanced to lower the required operating electrical field for actuation. However, existing solid and liquid fillers suffer from increased stiffness and filler leakage problems respectively, hindering the actu...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Hui, Tan, Matthew Wei Ming, Poh, Wei Church, Gao, Dace, Wu, Wenting, Lee, Pooi See
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/171388
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:By incorporating fillers into dielectric elastomers, electromechanical sensitivities can be enhanced to lower the required operating electrical field for actuation. However, existing solid and liquid fillers suffer from increased stiffness and filler leakage problems respectively, hindering the actuation performance of dielectric elastomer actuators (DEAs). To address these challenges, a soft, stretchable (∼300%), transparent (∼99%), and solid-state poly(ionic liquid) (PIL) is introduced to DEAs as a compliant filler. The mechanical properties of the PIL can be tuned by controlling the solvent ratio within precursors. When the PIL filler is introduced to a very high bonding elastomer (VHB), the effective dielectric constant increases from 4.7 to 16.4 at 1 kHz and the Young's modulus decreases to 0.21 MPa. The resulting planar DEA could achieve an area strain of 133% at 17 V μm−1, exceeding that of most DEAs with fillers. Notably, the PIL achieves adhesion and rapid self-healability, which eliminates filler leakage problems and endows DEAs with recoverability. A unimorph DEA demonstrates a bending angle of 44.7° at 12.6 V μm−1, two times greater than that exhibited by a DEA without the PIL filler. Simultaneous dynamic motion and light emission are further realized by integrating a unimorph DEA with an electroluminescent layer. Thus, the solid-state PIL filler provides high-performing and safer DEAs for soft robotics, interactive lighting, or wearables.