Ferroelectric modulation in flexible lead-free perovskite Schottky direct-current nanogenerator for capsule-like magnetic suspension sensor

The tribovoltaic nanogenerator (TVNG), a promising semiconductor energy technology, displays outstanding advantages such as low matching impedance and continuous direct-current output. However, the lack of controllable and stable performance modulation strategies is still a major bottleneck that imp...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiang, Feng, Thangavel, Gurunathan, Zhou, Xinran, Adit, Gupta, Fu, Hongbo, Lv, Jian, Zhan, Liuxiang, Zhang, Yihui, Lee, Pooi See
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171454
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The tribovoltaic nanogenerator (TVNG), a promising semiconductor energy technology, displays outstanding advantages such as low matching impedance and continuous direct-current output. However, the lack of controllable and stable performance modulation strategies is still a major bottleneck that impedes further practical applications of TVNG. Herein, by leveraging the ferroelectricity-enhanced mechanism and the control of interfacial energy band bending, a lead-free perovskite-based (3,3-difluorocyclobutylammonium)2 CuCl4 ((DF-CBA)2 CuCl4 )/Al Schottky junction TVNG is constructed. The multiaxial ferroelectricity of (DF-CBA)2 CuCl4 enables an excellent surface charge modulating capacity, realizing a high work function regulation of ≈0.7 eV and over 15-fold current regulation (from 6 to 93 µA) via an electrical poling control. The controllable electrical poling leads to elevated work function difference between the Al electrode and (DF-CBA)2 CuCl4 compared to traditional semiconductors and halide perovskites, which creates a stronger built-in electric field at the Schottky interface to enhance the electrical output. This TVNG device exhibits outstanding flexibility and long-term stability (>20 000 cycles) that can endure extreme mechanical deformations, and can also be used in a capsule-like magnetic suspension device capable of detecting vibration and weights of different objects as well as harvesting energy from human motions and water waves.