Self-supervised Blind2Unblind deep learning scheme for OCT speckle reductions
As a low-coherence interferometry-based imaging modality, optical coherence tomography (OCT) inevitably suffers from the influence of speckles originating from multiply scattered photons. Speckles hide tissue microstructures and degrade the accuracy of disease diagnoses, which thus hinder OCT clinic...
Saved in:
Main Authors: | Yu, Xiaojun, Ge, Chenkun, Li, Mingshuai, Yuan, Miao, Liu, Linbo, Mo, Jianhua, Shum, Perry Ping, Chen, Jinna |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/171481 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Self-supervised Self2Self denoising strategy for OCT speckle reduction with a single noisy image
由: Ge, Chenkun, et al.
出版: (2024) -
Micro-optical coherence tomography (μOCT) in vivo
由: Cui, Dongyao, et al.
出版: (2018) -
Design and optimization of a spectrometer for high-resolution SD-OCT
由: Wang, Lulu, et al.
出版: (2020) -
A two-step iteration mechanism for speckle reduction in optical coherence tomography
由: Wang, Xianghong, et al.
出版: (2019) -
Extending axial focus of optical coherence tomography using parallel multiple aperture synthesis
由: Bo, En, et al.
出版: (2019)