MAS-Net OCT: a deep-learning-based speckle-free multiple aperture synthetic optical coherence tomography

High-resolution spectral domain optical coherence tomography (SD-OCT) is a vital clinical technique that suffers from the inherent compromise between transverse resolution and depth of focus (DOF). Meanwhile, speckle noise worsens OCT imaging resolving power and restricts potential resolution-enhanc...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Wu, Renxiong, Huang, Shaoyan, Zhong, Junming, Li, Meixuan, Zheng, Fei, Bo, En, Liu, Linbo, Liu, Yong, Ge, Xin, Ni, Guangming
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/171482
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:High-resolution spectral domain optical coherence tomography (SD-OCT) is a vital clinical technique that suffers from the inherent compromise between transverse resolution and depth of focus (DOF). Meanwhile, speckle noise worsens OCT imaging resolving power and restricts potential resolution-enhancement techniques. Multiple aperture synthetic (MAS) OCT transmits light signals and records sample echoes along a synthetic aperture to extend DOF, acquired by time-encoding or optical path length encoding. In this work, a deep-learning-based multiple aperture synthetic OCT termed MAS-Net OCT, which integrated a speckle-free model based on self-supervised learning, was proposed. MAS-Net was trained on datasets generated by the MAS OCT system. Here we performed experiments on homemade microparticle samples and various biological tissues. Results demonstrated that the proposed MAS-Net OCT could effectively improve the transverse resolution in a large imaging depth as well as reduced most speckle noise.