A numerical study on the packing quality of fibre/polymer composite powder for powder bed fusion additive manufacturing

A discrete element model has been developed to simulate the packing process of fibre/polymer composite powder for powder bed fusion additive manufacturing. The geometric shapes of polymer powder particles and fibres are represented by multi-sphere particles and individual cylinders with round ends,...

全面介紹

Saved in:
書目詳細資料
Main Authors: Tan, Pengfei, Shen, Fei, Tey, Wei Shian, Zhou, Kun
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/171607
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A discrete element model has been developed to simulate the packing process of fibre/polymer composite powder for powder bed fusion additive manufacturing. The geometric shapes of polymer powder particles and fibres are represented by multi-sphere particles and individual cylinders with round ends, respectively. The numerical model can help to understand the flow dynamics of composite powder particles and the formation mechanisms of voids in powder packing processes. The numerical model has been utilised to analyse the effects of packing parameters on the packing quality of the powder bed. The simulation results suggest that the increase of the powder layer thickness is beneficial for increasing the packing density and lowering the surface roughness of the powder bed. A high roller spreading velocity degrades the packing quality of the powder bed. A small number of fibres in the composite powder particles are in favour of the packing quality, while excessive fibres reduce the packing quality of the powder bed.