Thermal deformation behavior and dynamic softening mechanisms of Zn-2.0Cu-0.15Ti alloy: an investigation of hot processing conditions and flow stress behavior

Through isothermal hot compression experiments at various strain rates and temperatures, the thermal deformation behavior of Zn-2.0Cu-0.15Ti alloy is investigated. The Arrhenius-type model is utilized to forecast flow stress behavior. Results show that the Arrhenius-type model accurately reflects th...

Full description

Saved in:
Bibliographic Details
Main Authors: Xie, Guilan, Kuang, Zhihao, Li, Jingxin, Zhang, Yating, Han, Shilei, Li, Chengbo, Zhu, Daibo, Liu, Yang
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171687
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Through isothermal hot compression experiments at various strain rates and temperatures, the thermal deformation behavior of Zn-2.0Cu-0.15Ti alloy is investigated. The Arrhenius-type model is utilized to forecast flow stress behavior. Results show that the Arrhenius-type model accurately reflects the flow behavior in the entire processing region. The dynamic material model (DMM) reveals that the optimal processing region for the hot processing of Zn-2.0Cu-0.15Ti alloy has a maximum efficiency of about 35%, in the temperatures range (493-543 K) and a strain rate range (0.01-0.1 s-1). Microstructure analysis demonstrates that the primary dynamic softening mechanism of Zn-2.0Cu-0.15Ti alloy after hot compression is significantly influenced by temperature and strain rate. At low temperature (423 K) and low strain rate (0.1 s-1), the interaction of dislocations is the primary mechanism for the softening Zn-2.0Cu-0.15Ti alloys. At a strain rate of 1 s-1, the primary mechanism changes to continuous dynamic recrystallization (CDRX). Discontinuous dynamic recrystallization (DDRX) occurs when Zn-2.0Cu-0.15Ti alloy is deformed under the conditions of 523 K/0.1 s-1, while twinning dynamic recrystallization (TDRX) and CDRX are observed when the strain rate is 10 s-1.