Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease
Background: In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely c...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171690 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-171690 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1716902023-11-12T15:37:36Z Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease Tano, Vincent Utami, Kagistia Hana Nur Amirah Binte Mohammad Yusof Bégin, Jocelyn Tan, Willy Wei Li Pouladi, Mahmoud A. Langley, Sarah Raye Lee Kong Chian School of Medicine (LKCMedicine) Translational Laboratory in Genetic Medicine, A*STAR Science::Medicine Huntington’s Disease Alternative Splicing Background: In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. Methods: To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. Findings: We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. Interpretation: We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. Ministry of Education (MOE) Nanyang Technological University Published version This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children’s Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC. 2023-11-06T01:12:08Z 2023-11-06T01:12:08Z 2023 Journal Article Tano, V., Utami, K. H., Nur Amirah Binte Mohammad Yusof, Bégin, J., Tan, W. W. L., Pouladi, M. A. & Langley, S. R. (2023). Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease. EBioMedicine, 94, 104720-. https://dx.doi.org/10.1016/j.ebiom.2023.104720 2352-3964 https://hdl.handle.net/10356/171690 10.1016/j.ebiom.2023.104720 37481821 2-s2.0-85166360971 94 104720 en RG23/22 EBioMedicine © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Medicine Huntington’s Disease Alternative Splicing |
spellingShingle |
Science::Medicine Huntington’s Disease Alternative Splicing Tano, Vincent Utami, Kagistia Hana Nur Amirah Binte Mohammad Yusof Bégin, Jocelyn Tan, Willy Wei Li Pouladi, Mahmoud A. Langley, Sarah Raye Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease |
description |
Background: In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. Methods: To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. Findings: We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. Interpretation: We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. |
author2 |
Lee Kong Chian School of Medicine (LKCMedicine) |
author_facet |
Lee Kong Chian School of Medicine (LKCMedicine) Tano, Vincent Utami, Kagistia Hana Nur Amirah Binte Mohammad Yusof Bégin, Jocelyn Tan, Willy Wei Li Pouladi, Mahmoud A. Langley, Sarah Raye |
format |
Article |
author |
Tano, Vincent Utami, Kagistia Hana Nur Amirah Binte Mohammad Yusof Bégin, Jocelyn Tan, Willy Wei Li Pouladi, Mahmoud A. Langley, Sarah Raye |
author_sort |
Tano, Vincent |
title |
Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease |
title_short |
Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease |
title_full |
Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease |
title_fullStr |
Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease |
title_full_unstemmed |
Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease |
title_sort |
widespread dysregulation of mrna splicing implicates rna processing in the development and progression of huntington's disease |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/171690 |
_version_ |
1783955534459699200 |