A hybrid deep learning approach for real-time estimation of passenger traffic flow in urban railway systems

This research introduces a hybrid deep learning approach to perform real-time forecasting of passenger traffic flow for the metro railway system (MRS). By integrating long short-term memory (LSTM) and the graph convolutional network (GCN), a hybrid deep learning neural network named the graph convol...

全面介紹

Saved in:
書目詳細資料
Main Authors: Fu, Xianlei, Wu, Maozhi, Ponnarasu, Sasthikapreeya, Zhang, Limao
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/171692
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This research introduces a hybrid deep learning approach to perform real-time forecasting of passenger traffic flow for the metro railway system (MRS). By integrating long short-term memory (LSTM) and the graph convolutional network (GCN), a hybrid deep learning neural network named the graph convolutional memory network (GCMN) was constructed and trained for accurate real-time prediction of passenger traffic flow for the MRS. Data collected of the traffic flow in Delhi’s metro rail network system in the period from October 2012 to May 2017 were utilized to demonstrate the effectiveness of the developed model. The results indicate that (1) the developed method provides accurate predictions of the traffic flow with an average coefficient of determination (R2) of 0.920, RMSE of 368.364, and MAE of 549.527, and (2) the GCMN model outperforms state-of-the-art methods, including LSTM and the light gradient boosting machine (LightGBM). This study contributes to the state of practice in proposing a novel framework that provides reliable estimations of passenger traffic flow. The developed model can also be used as a benchmark for planning and upgrading works of the MRS by metro owners and architects.