A hybrid deep learning approach for real-time estimation of passenger traffic flow in urban railway systems
This research introduces a hybrid deep learning approach to perform real-time forecasting of passenger traffic flow for the metro railway system (MRS). By integrating long short-term memory (LSTM) and the graph convolutional network (GCN), a hybrid deep learning neural network named the graph convol...
محفوظ في:
المؤلفون الرئيسيون: | Fu, Xianlei, Wu, Maozhi, Ponnarasu, Sasthikapreeya, Zhang, Limao |
---|---|
مؤلفون آخرون: | School of Civil and Environmental Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/171692 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Graph attention informer for long-term traffic flow prediction under the impact of sports events
بواسطة: Song, Yaofeng, وآخرون
منشور في: (2024) -
A survey on modern deep neural network for traffic prediction: Trends, methods and challenges
بواسطة: TEDJOPUMOMO, David Alexander, وآخرون
منشور في: (2022) -
Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: a deep learning approach
بواسطة: Fu, Xianlei, وآخرون
منشور في: (2022) -
Deep learning-powered vessel traffic flow prediction with spatial-temporal attributes and similarity grouping
بواسطة: Li, Yan, وآخرون
منشور في: (2024) -
A supervised learning approach for 4D air traffic conflict prediction under trajectory uncertainty
بواسطة: Mohamed Arif Mohamed, وآخرون
منشور في: (2023)