Reducing radar cross section of flat metallic targets using checkerboard metasurface: design, analysis, and realization

Aiming at the large-scale application of metasurface in the field of radar stealth, we present a hybrid resonance-based and dispersion substrate integrated checkerboard metasurface (CMS) for reducing the radar cross section (RCS) of flat metallic targets. Considering the frequency-dependent characte...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Chao, Wang, Ru-Zhi, Zhang, Sheng-Jun, Wang, Han, Wang, Wensong
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/171696
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Aiming at the large-scale application of metasurface in the field of radar stealth, we present a hybrid resonance-based and dispersion substrate integrated checkerboard metasurface (CMS) for reducing the radar cross section (RCS) of flat metallic targets. Considering the frequency-dependent characteristics of such a dispersion material, a pair of single and dual resonant artificial magnetic conductor meta-atoms with the modified “crusades-like” cell topologies is employed to maximize the operating bandwidth; besides, a comprehensive and thorough investigation on the resonance mechanism is conducted in this paper to provide an intuitive physical insight of meta-atoms’ reflection responses. By comparing the predicted results with simulations, the quasi-periodic effect is introduced to explain the frequency shift of 10 dB RCS reduction bandwidth. In the implementation procedure, a prototype of the designed RCS reducer with a total dimension of 180 × 180 mm2 is fabricated and measured, the 10 dB RCS reduction bandwidth of theoretical simulation and experimental measurement are basically consistent, and the performance improvement of 8 dB RCS reduction in the experimental results can be attributed to the dispersion effects of the dielectric substrate. With a better figure of merit, our efforts may serve as a useful exemplar for the economical CMS architecture in radar evasive applications.