Real-time acoustic energy harvesting in tunable frequencies via metasurface fabricated by additive manufacturing

This paper demonstrates an acoustic metasurface for energy harvesting at tunable frequencies. The support structure of the metasurface was fabricated by additive manufacturing. The acoustic absorption coefficient and sound transmission loss of the metasurface can be tuned by optimization of various...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chi, Mingxiang, Chen, Shibin, Jiao, Jiannan, Yu, Na
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/171732
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This paper demonstrates an acoustic metasurface for energy harvesting at tunable frequencies. The support structure of the metasurface was fabricated by additive manufacturing. The acoustic absorption coefficient and sound transmission loss of the metasurface can be tuned by optimization of various structural parameters, such as mass, mass size, prestress, membrane thickness, and array arrangement. The impedance tube was used to test the sound absorption ability of the fabricated metasurface, and the numerical simulation agreed well with the experiment, with a minimum acoustic absorption coefficient at ∼400 Hz. A PZT structure was designed and integrated into the acoustic metasurface, transforming the absorbed acoustic energy into electrical energy. Real-time acoustic energy harvesting was realized, and the peak voltage of 1.469 V was successfully monitored under the excitation of 410 Hz. For future applications, the energy harvesting efficiency can be further increased by improving the isolation components of the whole system.