Learning visual representations without human supervision
Supervised learning with deep neural networks has achieved great success in many visual recognition tasks including classification, detection, and segmentation. However, the need for expensive human annotations makes it increasingly prohibitive to embrace the massive amount of data available in the...
Saved in:
主要作者: | Xie, Jiahao |
---|---|
其他作者: | Chen Change Loy |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/171772 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
2D and 3D visual understanding with limited supervision
由: Wu, Zhonghua
出版: (2023) -
Semi-supervised learning for visual relation annotation
由: Tajrobehkar, Mitra
出版: (2022) -
Learning to control visual data translation
由: Koksal, Ali
出版: (2023) -
Sparse representation for human gait recognition
由: Zeng, Zinan
出版: (2011) -
Weakly-supervised learning for video understanding
由: Deng, Dingfan
出版: (2023)