Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine
A waste heat stepped utilization system integrating a partial heating sCO2 power cycle and a thermally-driven ejector refrigeration cycle is proposed for gas turbine performance enhancement. The gas turbine exhaust heat is stepped utilized by two gas heaters in the sCO2 power cycle and a waste heate...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/172494 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-172494 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1724942023-12-12T01:27:57Z Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine Jiang, Yuemao Ma, Yue Han, Fenghui Ji, Yulong Cai, Wenjian Wang, Zhe Energy Research Institute @ NTU (ERI@N) Engineering::Electrical and electronic engineering Exergy Multi-Objective Optimization A waste heat stepped utilization system integrating a partial heating sCO2 power cycle and a thermally-driven ejector refrigeration cycle is proposed for gas turbine performance enhancement. The gas turbine exhaust heat is stepped utilized by two gas heaters in the sCO2 power cycle and a waste heater. Then, the exhaust CO2 heat is cascade utilized by the ejector refrigeration cycle using zeotropic mixtures (R245fa/R1234ze) as its working fluid. Detailed energy, exergy, and economic models are built to conduct the system performance investigation. The results show that the proposed system can improve the thermal and exergy efficiency by 28.23% and 2.65% compared with the single sCO2 cycle. The parametric study discloses that there are optimal turbine inlet temperature and compressor inlet pressure for power output and optimal refrigerant mixture ratio, around 0.30, for cooling capacity. Further, multi-objective optimization is implemented, and the overall system efficiency, bottoming system exergy efficiency, and levelized cost of exergy can reach 62.15%, 45.22%, and 0.076 $/kWh, respectively. Finally, to prove the superiority of the integrated system for different application scenarios, the system performance is optimized in the gas turbine part-load. The results reveal that the proposed system can effectively improve the gas turbine performance, especially in the part-load. Under all the gas turbine loads, the proposed system's levelized cost of exergy is no more than 0.076 $/kWh, which provides theoretical references for the development of the gas turbine combined system in practical engineering. This work was funded by the National Natural Science Foundation of China (51906026), Dalian High Level Talent Innovation Support Program (2021RQ132), Postgraduate Education Reform Project of Liaoning Province (2022No.249–205), China Postdoctoral Science Foundation (2020M680928), Natural Science Foundation of Liaoning Province (2022-MS-154), the National Key Research and Development Program of China (2019YFE0116400), 111 Project (B18009). 2023-12-12T01:27:57Z 2023-12-12T01:27:57Z 2023 Journal Article Jiang, Y., Ma, Y., Han, F., Ji, Y., Cai, W. & Wang, Z. (2023). Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine. Energy, 265, 126326-. https://dx.doi.org/10.1016/j.energy.2022.126326 0360-5442 https://hdl.handle.net/10356/172494 10.1016/j.energy.2022.126326 2-s2.0-85144907461 265 126326 en Energy © 2022 Elsevier Ltd. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering Exergy Multi-Objective Optimization |
spellingShingle |
Engineering::Electrical and electronic engineering Exergy Multi-Objective Optimization Jiang, Yuemao Ma, Yue Han, Fenghui Ji, Yulong Cai, Wenjian Wang, Zhe Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
description |
A waste heat stepped utilization system integrating a partial heating sCO2 power cycle and a thermally-driven ejector refrigeration cycle is proposed for gas turbine performance enhancement. The gas turbine exhaust heat is stepped utilized by two gas heaters in the sCO2 power cycle and a waste heater. Then, the exhaust CO2 heat is cascade utilized by the ejector refrigeration cycle using zeotropic mixtures (R245fa/R1234ze) as its working fluid. Detailed energy, exergy, and economic models are built to conduct the system performance investigation. The results show that the proposed system can improve the thermal and exergy efficiency by 28.23% and 2.65% compared with the single sCO2 cycle. The parametric study discloses that there are optimal turbine inlet temperature and compressor inlet pressure for power output and optimal refrigerant mixture ratio, around 0.30, for cooling capacity. Further, multi-objective optimization is implemented, and the overall system efficiency, bottoming system exergy efficiency, and levelized cost of exergy can reach 62.15%, 45.22%, and 0.076 $/kWh, respectively. Finally, to prove the superiority of the integrated system for different application scenarios, the system performance is optimized in the gas turbine part-load. The results reveal that the proposed system can effectively improve the gas turbine performance, especially in the part-load. Under all the gas turbine loads, the proposed system's levelized cost of exergy is no more than 0.076 $/kWh, which provides theoretical references for the development of the gas turbine combined system in practical engineering. |
author2 |
Energy Research Institute @ NTU (ERI@N) |
author_facet |
Energy Research Institute @ NTU (ERI@N) Jiang, Yuemao Ma, Yue Han, Fenghui Ji, Yulong Cai, Wenjian Wang, Zhe |
format |
Article |
author |
Jiang, Yuemao Ma, Yue Han, Fenghui Ji, Yulong Cai, Wenjian Wang, Zhe |
author_sort |
Jiang, Yuemao |
title |
Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
title_short |
Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
title_full |
Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
title_fullStr |
Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
title_full_unstemmed |
Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
title_sort |
assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sco₂ cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/172494 |
_version_ |
1787136618385113088 |