Privacy-enhanced knowledge transfer with collaborative split learning over teacher ensembles
Knowledge Transfer has received much attention for its ability to transfer knowledge, rather than data, from one application task to another. In order to comply with the stringent data privacy regulations, privacy-preserving knowledge transfer is highly desirable. The Private Aggregation of Teacher...
محفوظ في:
المؤلفون الرئيسيون: | Liu, Ziyao, Guo, Jiale, Yang, Mengmeng, Yang, Wenzhuo, Fan, Jiani, Lam, Kwok-Yan |
---|---|
مؤلفون آخرون: | School of Computer Science and Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/172524 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Privacy-preserving knowledge transfer for intrusion detection with federated deep autoencoding gaussian mixture model
بواسطة: Chen, Yang, وآخرون
منشور في: (2022) -
Efficient dropout-resilient aggregation for privacy-preserving machine learning
بواسطة: Liu, Ziyao, وآخرون
منشور في: (2022) -
A blockchain-based location privacy-preserving crowdsensing system
بواسطة: YANG, Mengmeng, وآخرون
منشور في: (2019) -
Privacy-preserving outsourced calculation toolkit in the cloud
بواسطة: LIU, Ximeng, وآخرون
منشور في: (2020) -
ZkRep: a privacy-preserving scheme for reputation-based blockchain system
بواسطة: Huang, Chenyu, وآخرون
منشور في: (2022)