A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions

Rate-Splitting Multiple Access (RSMA) has emerged as a powerful multiple access, interference management, and multi-user strategy for next generation communication systems. In this tutorial, we depart from the orthogonal multiple access (OMA) versus non-orthogonal multiple access (NOMA) discussion h...

Full description

Saved in:
Bibliographic Details
Main Authors: Clerckx, Bruno, Mao, Yijie, Jorswieck, Eduard A., Yuan, Jinhong, Love, David J., Erkip, Elza, Niyato, Dusit
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/172576
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-172576
record_format dspace
spelling sg-ntu-dr.10356-1725762023-12-13T06:04:53Z A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions Clerckx, Bruno Mao, Yijie Jorswieck, Eduard A. Yuan, Jinhong Love, David J. Erkip, Elza Niyato, Dusit School of Computer Science and Engineering Engineering::Computer science and engineering Rate-Splitting Multiple Access Next Generation Multiple Access Rate-Splitting Multiple Access (RSMA) has emerged as a powerful multiple access, interference management, and multi-user strategy for next generation communication systems. In this tutorial, we depart from the orthogonal multiple access (OMA) versus non-orthogonal multiple access (NOMA) discussion held in 5G, and the conventional multi-user linear precoding approach used in space-division multiple access (SDMA), multi-user and massive MIMO in 4G and 5G, and show how multi-user communications and multiple access design for 6G and beyond should be intimately related to the fundamental problem of interference management. We start from foundational principles of interference management and rate-splitting, and progressively delineate RSMA frameworks for downlink, uplink, and multi-cell networks. We show that, in contrast to past generations of multiple access techniques (OMA, NOMA, SDMA), RSMA offers numerous benefits: 1) enhanced spectral, energy and computation efficiency; 2) universality by unifying and generalizing OMA, SDMA, NOMA, physical-layer multicasting, multi-user MIMO under a single framework that holds for any number of antennas at each node (SISO, SIMO, MISO, and MIMO settings); 3) flexibility by coping with any interference levels (from very weak to very strong), network loads (underloaded, overloaded), services (unicast, multicast), traffic, user deployments (channel directions and strengths); 4) robustness to inaccurate channel state information (CSI) and resilience to mixed-critical quality of service; 5) reliability under short channel codes and low latency. We then discuss how those benefits translate into numerous opportunities for RSMA in over forty different applications and scenarios of 6G, e.g., multi-user MIMO with statistical/quantized CSI, FDD/TDD/cell-free massive MIMO, millimeter wave and terahertz, cooperative relaying, physical layer security, reconfigurable intelligent surfaces, cloud-radio access network, internet-of-things, massive access, joint communication and jamming, non-orthogonal unicast and multicast, multigroup multicast, multibeam satellite, space-air-ground integrated networks, unmanned aerial vehicles, integrated sensing and communications, grant-free access, network slicing, cognitive radio, optical/visible light communications, mobile edge computing, machine/federated learning, etc. We finally address common myths and answer frequently asked questions, opening the discussions to interesting future research avenues. Supported by the numerous benefits and applications, the tutorial concludes on the underpinning role played by RSMA in next generation networks, which should inspire future research, development, and standardization of RSMA-aided communication for 6G. This work was supported in part by the National Natural Science Foundation of China under Grant 62201347. 2023-12-13T06:04:53Z 2023-12-13T06:04:53Z 2023 Journal Article Clerckx, B., Mao, Y., Jorswieck, E. A., Yuan, J., Love, D. J., Erkip, E. & Niyato, D. (2023). A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions. IEEE Journal On Selected Areas in Communications, 41(5), 1265-1308. https://dx.doi.org/10.1109/JSAC.2023.3242718 0733-8716 https://hdl.handle.net/10356/172576 10.1109/JSAC.2023.3242718 2-s2.0-85148467845 5 41 1265 1308 en IEEE Journal on Selected Areas in Communications © 2023 IEEE. All rights reserved.
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Computer science and engineering
Rate-Splitting Multiple Access
Next Generation Multiple Access
spellingShingle Engineering::Computer science and engineering
Rate-Splitting Multiple Access
Next Generation Multiple Access
Clerckx, Bruno
Mao, Yijie
Jorswieck, Eduard A.
Yuan, Jinhong
Love, David J.
Erkip, Elza
Niyato, Dusit
A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
description Rate-Splitting Multiple Access (RSMA) has emerged as a powerful multiple access, interference management, and multi-user strategy for next generation communication systems. In this tutorial, we depart from the orthogonal multiple access (OMA) versus non-orthogonal multiple access (NOMA) discussion held in 5G, and the conventional multi-user linear precoding approach used in space-division multiple access (SDMA), multi-user and massive MIMO in 4G and 5G, and show how multi-user communications and multiple access design for 6G and beyond should be intimately related to the fundamental problem of interference management. We start from foundational principles of interference management and rate-splitting, and progressively delineate RSMA frameworks for downlink, uplink, and multi-cell networks. We show that, in contrast to past generations of multiple access techniques (OMA, NOMA, SDMA), RSMA offers numerous benefits: 1) enhanced spectral, energy and computation efficiency; 2) universality by unifying and generalizing OMA, SDMA, NOMA, physical-layer multicasting, multi-user MIMO under a single framework that holds for any number of antennas at each node (SISO, SIMO, MISO, and MIMO settings); 3) flexibility by coping with any interference levels (from very weak to very strong), network loads (underloaded, overloaded), services (unicast, multicast), traffic, user deployments (channel directions and strengths); 4) robustness to inaccurate channel state information (CSI) and resilience to mixed-critical quality of service; 5) reliability under short channel codes and low latency. We then discuss how those benefits translate into numerous opportunities for RSMA in over forty different applications and scenarios of 6G, e.g., multi-user MIMO with statistical/quantized CSI, FDD/TDD/cell-free massive MIMO, millimeter wave and terahertz, cooperative relaying, physical layer security, reconfigurable intelligent surfaces, cloud-radio access network, internet-of-things, massive access, joint communication and jamming, non-orthogonal unicast and multicast, multigroup multicast, multibeam satellite, space-air-ground integrated networks, unmanned aerial vehicles, integrated sensing and communications, grant-free access, network slicing, cognitive radio, optical/visible light communications, mobile edge computing, machine/federated learning, etc. We finally address common myths and answer frequently asked questions, opening the discussions to interesting future research avenues. Supported by the numerous benefits and applications, the tutorial concludes on the underpinning role played by RSMA in next generation networks, which should inspire future research, development, and standardization of RSMA-aided communication for 6G.
author2 School of Computer Science and Engineering
author_facet School of Computer Science and Engineering
Clerckx, Bruno
Mao, Yijie
Jorswieck, Eduard A.
Yuan, Jinhong
Love, David J.
Erkip, Elza
Niyato, Dusit
format Article
author Clerckx, Bruno
Mao, Yijie
Jorswieck, Eduard A.
Yuan, Jinhong
Love, David J.
Erkip, Elza
Niyato, Dusit
author_sort Clerckx, Bruno
title A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
title_short A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
title_full A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
title_fullStr A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
title_full_unstemmed A primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
title_sort primer on rate-splitting multiple access: tutorial, myths, and frequently asked questions
publishDate 2023
url https://hdl.handle.net/10356/172576
_version_ 1787136651919622144